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1 Introduction
The work on this project was performed by the graduate research assistant Alden Astwood in
collaboration with the P.I. V. M. Kenkre. Our study was motivated by the work of Lyo and Huang
in which they analyzed the effects of various types of scattering in single and double quantum
wires using a Boltzmann equation formalism [1, 2, 3, 4]. In particular, one of Lyo and Huang’s
interesting predictions is that the conductance as a function of a magnetic field is quite different
when there is scattering as opposed to when the motion is ballistic.

In the past few decades it has become possible to fabricate high mobility transistors which are
small enough that electrons are able to maintain a definite phase as they move through the junc-
tion. Non-traditional analysis becomes therefore important to describe quantum effects adequately.
Commonly studied systems are GaAs-AlGaAs heterostructures, in which the difference in bandgap
of the two materials causes a high mobility two-dimensional electron gas (2DEG) to form at the
interface. This effect is described in many solid state textbooks, e.g. see [5]. Lithography tech-
niques can be used to etch a gate onto the structure. This allows the effective width of the junction
to be controlled. Devices thus constructed are known as nanowires, quantum wires, or quantum
point contacts. Because of the low amount of scattering in these structures, the conductance as a
function of gate voltage or transverse magnetic field can be quite different than what is predicted
by Ohm’s law. Many formalisms have been developed to analyze transport in quantum wires, most
prominently the transmission formalism developed by Landauer and others [6, 7, 8, 9, 10, 11].

We pursued in this project a variety of theoretical approaches to the description of quantum
transport in nanowires. In previous reporting periods we considered the application of a trans-
port theory developed by Kenkre, Biscarini, and Bustamante for analyzing scanning tunneling
microscopy (STM) images to transport in quantum wires [12, 13, 14, 15, 16, 17]. Incoherent scat-
tering effects are incorporated in the theory in a particularly simple way through the stochastic
Liouville equation (SLE). In the simplest form of that theory, a single parameter α controls the
strength of incoherent scattering effects, and adjusting this parameter is a quick usable way to an-
alyze the transport behavior for different amounts of scattering in the conductor. Within the time
period we devoted to the STM theory in this project we could not construct a complete theoretical
tool based on that formalism because of level broadening issues. These issues arise because of the
coupling to the contacts. We have discussed these issues in a previous report as this broadening
limits the amount of current that can be forced through the conductor. It still remains unclear to us
how to incorporate these broadening effects into the STM theory.

Modeling the transport using Wigner functions is another avenue we have pursued in this work.
Analogous to the classical distribution function, a Wigner function is a quantity defined on phase
space, but unlike the classical distribution function, the Wigner function still contains complete
information about the quantum state of the system [18, 19]. The Wigner function obeys an equation
of motion which is conceptually similar to the classical Boltzmann equation. In an earlier report
we calculated the Wigner functions in the steady state in a quasi-1D quantum wire for two different
types of confinement. Motivated by our desire to understand scattering processes in quantum wires
in a simple way, in the final reporting period we focussed on applying the existing transmission
formalism to successively more complicated systems as shown below. We hope that our results
will be useful to further investigations on this problem.
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2 Lyo and Huang Boltzmann Equation Solution
As a starting point, Lyo and Huang take a Boltzmann equation [1, 2, 3, 4],

vj +
2π

h̄

∑
j

|Vj′,j|2(gj′ − gj)δ(Ej − Ej′) = 0. (1)

Here the vj’s and Ej’s are respectively group velocities and energies of electrons in the jth sub-
band, gj is the nonequilibrium part of the distribution function, and the |Vj′,j|’s represent scattering
matrix elements. This Boltzmann equation is then formally solved, and their expression for the
conductance is

G = − 2q2

hLy

∫ ∞
0

dE [−f ′0(E)]S†U−1S (2)

where S is a vector which contains the signs of the velocities vj , and U is a matrix with elements
related to the scattering matrix elements |Vj′,j|2. Lyo and Huang have shown that indeed this re-
duces to the well known Landauer result if the motion is ballistic, and they have used this approach
to analyze the effects of different kinds of scattering.

One result of theirs which we have found particularly interesting is that the behavior of the
conductance as a function of magnetic field is quite different from the ballistic result when the
wires are rough or dirty. From the published work of Lyo and Huang we have not been able
to understand physically how the conductance behaves if the amount of scattering is increased
or decreased by given amounts although they certainly have provided a detailed formalism for
calculation.

3 Kenkre et al. STM Theory
The transport theory by Kenkre, Biscarini, and Bustamante [12, 13, 14, 15, 16, 17] implements in-
coherent scattering in a particularly simple way. We pursued this approach because of the appealing
possibility of understanding how different amounts of incoherent scattering affect the conductance.
Their expression for the resistance is

R =
1

q2ne


∫∞

0
dt[ΠSS(t)− ΠST (t)](

∆ηth
S

µ−µS

) +

∫∞
0
dt[ΠTT (t)− ΠTS(t)](

∆ηth
T

µ−µT

)
 (3)

where ne is the number of electrons in the junction, ∆η’s are differences from equilibrium popu-
lations, the µ’s are chemical potentials, and the Π’s are probability propagators. The probability
propagators can be found, for example, by solving a Master equation if the motion is fully inco-
herent, or a stochastic Liouville equation (SLE), equivalent to a generalized Master equation, if
the motion is partially coherent. One form of the SLE adds a term to the Liouville-von Neumann
equation which causes off-diagonal elements of the density matrix to decay to their thermal values
[20],

∂ρmn
∂t

=
1

ih̄
[H, ρ]mn − α(1− δmn)(ρmn − ρth

mn) (4)

where α is a parameter which controls the amount of coherence. Exact propagators for some
systems are known and may be found in the literature (see for example [21] and [22]).
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One issue that arises with this approach is that when the transport is fully coherent, the propaga-
tors are periodic for a finite system, and certain integrals, like those in equation (3), are divergent.
However, when the transport is fully coherent, level broadening effects due to coupling to infi-
nite sized contacts limit the maximum amount of current that can be forced through the junction,
and the resistance is finite [23]. Discussion of broadening effects in a one-level system has been
included in previous reports. While it is still not clear to us how to incorporate broadening while
maintaining this formulation in terms of the probability propagators for multi-level systems, one of
the avenues we would pursue if we had more time would be to consider the idealization of infinite
systems to avoid the technical problems we encountered.

4 Wigner Function Approach
Using Wigner functions to model transport is desirable because of the conceptual similarity to
classical transport theory. Unlike the classical distribution function, it makes sense to talk about
the density matrix as a function of two position variables (i.e. ρ(x,x′, t) ≡ 〈x|ρ(t)|x′〉) or two
momentum variables, (i.e. ρ(x,x′, t) ≡ 〈x|ρ(t)|x′〉), but it does not make sense to talk about
the density matrix as a function on phase space. However, it is possible to transform ρ(x,x′, t) to
center of mass and relative coordinates, then perform a Fourier transform on the relative coordinate.
The resulting quantity, the Wigner function, is now a function defined on phase space, and since
the transformation is invertible, the Wigner function still contains all the information about the
quantum state of the system that the density matrix does.

The Wigner W function can be defined (in d dimensions) as [18, 19, 24, 25]

W (x,p, t) =
1

hd

∫
dse−ip·s/h̄〈x + s/2|ρ(t)|x− s/2〉. (5)

Transforming the von Neumann equation for the evolution of the density, the time evolution of the
Wigner function can be shown to obey

∂W

∂t
= − p

m
· ∂W
∂x

+

∫
dp′χ(x,p′)W (x,p + p′, t) (6)

where χ is

χ(x,p′) ≡ 1

hd

∫
ds sin(p′ · s/h̄)[U(x + s/2)− U(x− s/2)]. (7)

This is similar to the classical Boltzmann equation, but because of interference effects the second
term is nonlocal.

In the previous reporting period, we showed that the Wigner function for a quasi-1D ballistic
conductor in the steady state is

W (x,p) =
1

h

∑
n

[Θ(py)f(En,py/h̄ − µL) + Θ(−py)f(En,py/h̄ − µR)]Wn(x, px) (8)

where Θ is the step function, En,py/h̄ is the energy of a state which is in the nth excited state of the
confinement potential and has momentum py in the y direction, µL and µR are the electrochemical
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potentials of the left and right contacts, and Wn(x, px) is the Wigner function corresponding to the
nth excited state of the confinement potential. Using the expression

〈O〉 =

∫ ∫
dxdpO(x,p)W (x,p), (9)

where O(x,p) is the Wigner-Weyl transform of an observable O, to calculate the current, and
taking the low bias, low temperature limit, we were able to recover the Landauer result for the
quantized conductance.

Some authors have already done some work using Wigner functions to study quantum transport
in resonant tunneling diodes; e.g. see [26, 27]; however, as discussed in [25], one difficulty with
applying the Wigner function representation for more complicated systems is correctly incorporat-
ing open boundary conditions into the problem.

5 Transmission Formalism
The transmission formalism developed by Landauer and others [6, 7, 8, 9, 10, 11] has been a
popular tool for calculating current in quantum wires and other mesoscale devices.

In order for current to flow through a conductor, it must be connected to at least two contacts.
One contact is assumed to be interacting with a reservoir at electrochemical potential µ1, and the
other is interacting with a reservoir at electrochemical potential µ2. This difference in electro-
chemical potentials causes electrons to flow from one contact to the other through the conductor.
Landauer and others have shown that when the transport is coherent (i.e. there are no phase-
breaking scattering processes), the current in the conductor is related to the transmission function
T (E). At finite temperature, the current is [28, 23]

I =
2q

h

∫ ∞
−∞

M(E)T (E)[f1(E)− f2(E)]dE (10)

where f1(E) and f2(E) are the Fermi functions of the two contacts and M(E) is the number of
modes with energy less than E. The transmission function (per mode) T (E) is defined to be the
probability that an electron injected into one contact with energy E will reach the other contact.

At low bias and low temperature, this reduces to

I ≈ 2q2

h
VMT (11)

so the conductance is

G =
I

V
=

2q2

h
MT. (12)

This simple relationship has been used in the literature to calculate currents in mesoscale de-
vices with high mobilities. In a quasi-1d ballistic conductor (T = 1), the number of modes M
can be varied by adjusting the voltage of a gate or the strength of a transverse magnetic field. This
leads to a kind of quantization of the conductance, which has been experimentally measured by
van Wees et al. and others [29, 30, 31].

The Landauer formalism can also be expanded to include multi-terminal measurements, and
phase-breaking scattering processes can be included phenomenologically by connecting a terminal
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Figure 1: Experimental measurement of quantized conductance by van Wees et al. [30].

which extracts electrons from the conductor and reinjects them with a different phase (see e.g.
discussions in [28]).

It is sometimes useful to express the transmission T (E) in terms of the Green’s function
through use of the Fisher-Lee relation [32]. When the conductor is coupled to two contacts, the
Green’s function for the conductor subsystem becomes [28, 23]

G(E) = [E −Hc − Σ1(E)− Σ2(E)]−1 (13)

where Hc is the Hamiltonian of the isolated conductor, and Σ1 and Σ2 are non-Hermitian and
energy dependent self energies which arise from the coupling to the contacts. The self energy
Σ1(E) is related to the (retarded) Green’s function of the isolated contact, G1 ≡ [E −H1]−1, and
the coupling matrix τ1 which connects the contact to the conductor:

Σ1 ≡ τ1G1τ
†
1 . (14)

Σ2 is similarly defined for the second contact. Once the self energies and G(E) are known, the
transmission (times the number of modes) can be calculated from the relation [28, 23]

M(E)T (E) = Tr{Γ1GΓ2G
†} (15)

where the trace runs over conductor states and Γ1 and Γ2 are related to the self energies by Γ1 ≡
i(Σ1 − Σ†1) and Γ2 ≡ i(Σ2 − Σ†2).

This relationship also connects the Landauer transmission theory to the more general non-
equilibrium Green’s function formalism developed by Keldysh, Kadanoff and Baym, and others
[33, 34].
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6 Analytic Transmission Calculations for Tight Binding Sys-
tems

We chose to examine several models within the context of the transmission theory in order to
help us better understand how scattering affects the conductance. We begin below with a 1-level
conductor connected to two semi-infinite contacts. Next, we consider a 2-level conductor with
both energy levels connected to both contacts and compare with the one level system. The result
is then generalized to N degenerate levels, each connected to both contacts. Finally, we consider a
single level conductor which is interacting with a harmonic oscillator.

6.1 1-Level Conductor
The problem of single impurity scattering has already been worked out in the literature (in partic-
ular see [35] or the discussions in [28] or [23]), but we reproduce the result here for comparison.

We consider a conductor consisting of a single site with energy ε0. The conductor is coupled
to two semi-infinite 1D tight binding chains with nearest neighbor interaction strength V . The
strength of the coupling from conductor to contacts is ηV . The total Hamiltonian is

H = HL +HR +Hc + τL + τ †L + τR + τ †R (16)

where HL and HR are the Hamiltonians for the isolated left and right contacts, Hc is the Hamil-
tonian for the isolated conductor, and τL and τR represent the coupling between conductor and
contacts,

HL ≡ V
∑
m<−1

[|m〉〈m+ 1|+ |m+ 1〉〈m|] , (17)

HR ≡ V
∑
m>0

[|m〉〈m+ 1|+ |m+ 1〉〈m|] , (18)

Hc ≡ ε0|0〉〈0|, (19)
τL ≡ ηV |0〉〈−1|, (20)
τR ≡ ηV |0〉〈1|. (21)

To calculate the transmission T (E) we consider a wavefunction consisting of an incident wave
from the left, an outgoing reflected wave on the left, and a transmitted wave on the right:

〈m|ψ〉 =


eikm + re−ikm for m < 0

ψ0 for m = 0

teikm for m > 0

. (22)

Enforcing H|ψ〉 = E|ψ〉, we must have

T (E) = |t|2 =
h̄2v2(E)

[E(1−η2)−ε0]2

η4 + h̄2v2(E)
(23)

where
h̄2v2(E) ≡ 4V 2 − E2 = 4V 2 sin2 k. (24)
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Figure 2: Transmission versus energy for the one level conductor with η = 1 for different values
of a ≡ ε0/2V

To illustrate the equivalence of this procedure and the Green’s function method, we note that
the Green’s function for the semi-infinite tight binding contacts can be obtained from the well
known expression for the infinite chain (see [36]) using the method of images. Assuming we are
within the band, −2V < E < 2V , the resulting self-energies are

ΣL(E) = ΣR(E) = η2V e−i|θ||0〉〈0| (25)

where cos θ = E/2V and θ is chosen to be between −π and π. The conductor Green’s function is
then

G(E) = [E −Hc − ΣL(E)− ΣR(E)]−1 =
|0〉〈0|

E − ε0 − 2η2V e−i|θ|
, (26)

and the Γ matrices are
ΓL(E) = ΓR(E) = 2η2V sin |φ||0〉〈0|. (27)

The transmission is then

T (E) = Tr{ΓLGΓRG
†} = 〈0|ΓLGΓRG

†|0〉 =
h̄2v2(E)

[E(1−η2)−ε0]2

η4 + h̄2v2(E)
(28)
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which is exactly what we obtained earlier in a different manner.
For the special case η = 1, we have

T (E) = |t|2 =
h̄2v2(E)

ε20 + h̄2v2(E)
(29)

Additionally, if ε0 = 0, the incoming wave is not scattered at all, and we have perfect transmission
(T = 1). As |ε0| is increased, the transmission everywhere decreases. At the band edges, E =
±2V , h̄v(E) = 0 and the transmission vanishes (unless also ε0 = 0). The maximum transmission
is at E = 0. The transmission when η = 1 is not sensitive to the sign of ε0. The transmission as a
function of energy for different values of a ≡ ε0/2V is plotted in figure 2.

6.2 2-Level Conductor
Next, we have considered a conductor with two energy levels εA and εB. Both energy states are
connected to both contacts with a strength V . The total Hamiltonian has again the form (16),
except now with

Hc = εA|A〉〈A|+ εB|B〉〈B| (30)
τL = V |A〉〈−1|+ V |B〉〈−1| (31)
τR = V |A〉〈+1|+ V |B〉〈+1| (32)

where |A〉 and |B〉 are the two conductor states. The conductor Hamiltonians HA and HB are
the same as in the previous section. Calculating the transmission (with the Green’s function or
otherwise) yields

T (E) =
h̄2v2(E)

(E2−εAεB)2

(2E−εA−εB)
+ h̄2v2(E)

. (33)

For the purpose of comparison with the result for the one level system with η = 1, equation
(29), we have considered the case where the two conductor levels are degenerate, εA = εB = ε0.
For the transmission this yields

T2(E) =
h̄2v2(E)

(E+ε0)2

4
+ h̄2v2(E)

. (34)

The transmission again vanishes at the band edges. This result differs from the single level case
above in that the transmission is no longer symmetric around E = 0, and it is also sensitive to
the sign of ε0. Furthermore if ε0 is within the band (|ε0| < 2V ), then at E = −ε0 the conductor
becomes transparent (T = 1). In contrast, for the one level conductor with η = 1, the transmission
is always less than 1 for ε0 6= 0. The transmission as a function of energy is plotted in figure 3.

6.3 N -Level (Degenerate) Conductor
Next we considered a conductor consisting of N degenerate levels, with each level coupled to
both contacts with an interaction strength V . The result for the transmission, a generalization of
equation (34) is

TN(E) =
h̄2v2(E)

[E(1−N)−ε0]2

N2 + h̄2v2(E)
. (35)
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Figure 3: Transmission versus energy for the degenerate two level conductor for different values
of a ≡ ε0/2V

Qualitatively, the behavior is similar to the two level case. TN(E) is again asymmetric around
E = 0, and if ε0 is within the band, the conductor is transparent at E = ε0/(1 − N). It is also
interesting to note that this result is equivalent to equation (23) if we replace η2 with N .

6.4 1-Level Conductor Interacting with a Harmonic Oscillator
Next we chose to look at a one level conductor which is interacting with a harmonic oscillator.
This simplified system represents internal states of a conductor. For the total Hamiltonian we take

H = V
∞∑

m=−∞

(|m〉〈m+ 1|+ |m+ 1〉〈m|)⊗ Ib + ε0|0〉〈0| ⊗ Ib

+ Ie ⊗ h̄ω
(

1

2
Ib + b†b

)
+ |0〉〈0| ⊗ gh̄ω(b+ b†) (36)

where the |m〉’s are the electronic states, b and b† are the annihilation and creation operators for the
bosons, Ib and Ie are the boson and electron identity operators, and g is a dimensionless constant
which describes the strength of the interaction with the conductor state. The interaction between
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conductor and oscillator changes the effective energy of the |0〉 state based on the position of the
oscillator.

Provided the temperature is low enough, the oscillator should be in its (non-shifted) ground
state |φ0〉 before the electron passes through the junction, so for the incoming wave we take∑

m<0

eik0m|m〉 ⊗ |φ0〉 (37)

where the energy of the incoming electron is Ee = 2V cos k0. Because of the interaction, as the
electron passes through the conductor it may create one or more excitations in the oscillator, so the
reflected and transmitted waves must be of the form

reflected wave:
∑
m<0

∑
n

rne
−iknm|m〉 ⊗ |φn〉 (38)

transmitted wave:
∑
m>0

∑
n

tne
−knm|m〉 ⊗ |φn〉 (39)

where rn and tn are reflection and transmission amplitudes for modes with n bosons in the oscilla-
tor. The |φn〉’s are n boson eigenstates of the non-shifted oscillator. Since the incoming wave only
has enough energy to create a finite number of bosons, some of the kn’s will necessarily be com-
plex, and part of the electron wavefunction will be exponentially localized around the conductor.

EnforcingH|ψ〉 = E|ψ〉 with |ψ〉 consisting of the sum of incoming, reflected, and transmitted
waves, it is possible to show that the kn’s are determined by

Etotal = 2V cos k0 +
h̄ω

2
= 2V cos kn + h̄ω

(
n+

1

2

)
(40)

and the reflection and transmission amplitudes are

δn,0 + rn = tn = −2iV sin k0〈φn|G(E)|φ0〉 (41)

and the Green’s function G is

G(E) ≡ [E −H0 −H1 − 2Σ(E)]−1 (42)

with

H0 ≡ ε0 + h̄ω

(
b†b+

1

2

)
, (43)

H1 ≡ gh̄ω(b+ b†), (44)

Σ(E) ≡ V
∑
n

eikn|φn〉〈φn|. (45)

If we consider the special case h̄ω > 4V , then the incoming electron does not have enough
energy to create a boson and keep propagating, all kn’s for n > 0 will be complex, and the trans-
mission is only affected by t0,

T = |t0|2 = [2V sin k0]2〈φ0|G(E)|φ0〉〈φ0|G†(E)|φ0〉. (46)
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Due to the difficulty in calculatingG(E) exactly, we have considered the limit of weak coupling
g. Expanding equation (42), we have [36]

G = G0 +G0H1G0 +G0H1G0H1G0 + ... (47)

where

G0(E) = [E −H0 − 2Σ(E)]−1 =
∑
n

|φn〉〈φn|
E − ε0 − h̄ω(n+ 1/2)− 2V eikn

. (48)

Using this approximation, the transmission when h̄ω > 4V to order g2 is

T (Ee) ≈
h̄2v2(Ee)

ε20 + h̄2v2(Ee)
+ g2h(Ee) (49)

where the correction term is

h(Ee) ≡
2ε0h̄

2ω2h̄2v2(Ee)[
ε20 + h̄2v2(Ee)

]2 [
ε0 +

√
h̄2ω2 − 2Eeh̄ω − h̄2v2(Ee)

] (50)
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and with v(Ee) again the velocity as a function of the electron energy, h̄2v2(Ee) ≡ 4V 2 − E2
e .

This correction term may be positive or negative depending on the sign of ε0, and it is not
symmetric around Ee = 0. Interestingly, the h(Ee) also vanishes if the site energy ε0 is zero. The
function h(Ee) is plotted in figure 4.

7 Conclusions
We have examined quantum transport in nanowires with several different formalisms. The Boltz-
mann equation based theory of Lyo and Huang is able to incorporate many different kinds of
scattering and make interesting predictions but we find absent in it a simple way of providing
physical understanding of its effects. The STM theory of Kenkre, Biscarini, and Bustamante in-
corporates incoherent scattering in a much simpler way, but difficulties arise when the motion is
fully coherent. Wigner functions, which are quasi-probability distributions defined on phase space,
are appealing because of the conceptual similarity to classical transport theory. We were able to
calculate the Wigner function for ballistic 1D conductors and show that the current reduces to the
Landauer result, but incorporating boundary conditions correctly in more complicated cases re-
mains a problem to complete. We have found the transmission formalism to be quite useful for
simpler systems with elastic scattering when the motion is fully coherent and accordingly we have
provided analysis of interactions of the conductor with a bath represented in a simple manner by
harmonic vibrations.

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED.

12



References
[1] S. K. Lyo and Danhong Huang. “Multisublevel magnetoquantum conductance in single and

coupled double quantum wires.” Physical Review B, 64 (11), p. 115320, 2001.

[2] S. K. Lyo and Danhong Huang. “Magnetoquantum oscillations of thermoelectric power in
multisublevel quantum wires.” Physical Review B, 66 (15), p. 155307, 2002.

[3] S. K. Lyo and Danhong Huang. “Temperature-dependent magnetoconductance in quantum
wires:Effect of phonon scattering.” Physical Review B, 68 (11), p. 115317, 2003.

[4] S. K. Lyo and Danhong Huang. “Effect of electron-electron scattering on the conductance of
a quantum wire studied with the Boltzman transport equation.” Physical Review B, 73 (20),
p. 205336, 2006.

[5] Minko Balkanski and Richard Fisher Wallis. Semiconductor physics and applications. Ox-
ford University Press, 2000. ISBN 9780198517412.

[6] R. Landauer. “Spatial Variation of Currents and Fields Due to Localized Scatterers in Metallic
Conduction.” IBM Journal of Research and Development, 1 (3), pp. 223–231, 1957. ISSN
0018-8646.

[7] Rolf Landauer. “Electrical resistance of disordered one-dimensional lattices.” Philosophical
Magazine, 21 (172), pp. 863–867, 1970. ISSN 0031-8086.
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